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modulated from an input that resembles the overall response*
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Abstract. Light adaptation is a gain-control process
that endows photoreceptors with large dynamic range.
In invertebrates, this process appears to be mediated by
a negative feedback that sets the amplitude of the
isolated photon responses (bumps) by modulating an
enzyme’s rate of catalysis. This paper reports measure-
ments of the feedback dynamics of Limulus from the
responses to small modulations in light intensity. The
responses show a noise that apparently arises from the
random arrival of photons. We use a dynamic noise-
analysis technique to extract the cells’s frequency-
response transfer function for bump amplitude. Its ratio
to the transfer function for the summed response of the
cell has a simple form at low frequencies, This indicates
that the origin of the feedback responsible for the
adaptation is at a stage temporally close to the final
conductance response. Moreover, the form of the trans-
fer function suggests feedback by a chemical agent
which is removed by a single enzymatic-like stage at
low light intensity and by several such stages in parallel
but with a spread of time constants at high intensity.

1 Introduction

Photoreceptors continue to respond differentially to
steady light at intensities that extend over six decades,
although their range of response is limited to two or
three decades. This large dynamic range is probably
achieved by an enzymatic gain-control, which appears
to be mediated in invertebrates by Ca?* (Lisman and
Brown 1972, 1975). In Limulus, the steady-state stimu-
lus-response relation suggests that this gain-control is a
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nonlinear negative feedback (Grzywacz and Hillman
1988). Also, this relation suggests that the Ca?* ions
mediating this feedback originate at a late stage of the
phototransduction chain and act cooperatively to in-
hibit;an enzyme at an earlier stage (Grzywacz and
Hillman 1988). This evidence for negative feedback,
however, derives from an analysis of steady-state re-
sponses without consideration of dynamics. Previous
works (Fein and DeVoe 1973) report on the time-
course of adaptation following a step of light. However,
their results can be interpreted in terms of the time
course of adaptation only if the amplitude of the re-
sponse to a superimposed test flash depends exclusively
on the cell’s sensitivity at the time of the test flash. This
condition is unproven and unlikely. The problem may
be avoided by application of a weakly-modulated stim-
ulus as a probe. Since the sensitivity then would change
only slightly, it would be monitored quite accurately by
the modification of the responses. Use of a sinusoidally
modulated stimulus makes possible the measurement of
the frequency response fransfer function (see¢ accompa-
nying paper, Grzywacz et al. 1992) which then reflects
fully the dynamics of the process. Measurement of these
responses, their dissection into unit events (the isolated
photon responses or “bumps™), and interpretation of
these results are the aims of this note. We find evidence
that the adaptation is driven by a feedback which
originates near the final transduction stage, and which
has simple dynamics.

Since the processes of adaptation and transduction
appear 1o be mutually dependent, an understanding of
the mechanism of adaptation calls for a resolution of
the conductance response into bumps. This enables us
to focus on the stage on which the gain-control acts.
Previous studies (e.g. Dodge et al. 1968} have shown
that adaptation changes mainly the amplitude of the
bump, and not its quantum efficiency or duration, over
the range of intensities covered by our modulations.

In order to study the bump amplitude transfer
function, we developed a technique for the analysis of
non-stationary noise (Grzywacz et al. 1988) and applied
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it to the response to a sinusoidally modulated stimulus
to yield the separate time dependences of the bump
amplitude and rate. Because the amplitude of the stimu-
lus modulation was sufficiently small, the system pre-
sumably behaved essentially linearly, and this enabled
us to measure the formal transfer functions from the
stimulus to the bump amplitude, and from the summed
response to the bump amplitude.

2 Theory

The intensity of the stimulus may be represented as the
real part of I=1I,+ I, exp(iws), where w/2n is the
stimulus temporal frequency and I, € J,. Under broad
circumstances, the form of such input will be inberited
by the various response variables (Brodie et al. 1978).
In particular, the time dependent mean response R(?)
and its variance V(¢), obtained by averaging over sev-
eral stimulus cycles, will be the real paris of R=
Ry + Ry exp(iwf) and V =V, + V, exp(iewt). (We con-
firmed that, for the modulations used, the higher
harmonic content of R(¢) and V(¢) was indeed inappre-
ciable.) Also, we may assume the same response form
for the bump rate and amplitude. The latter will then be

h = hy + by exp(io?).

Campbell’s Theorem (Rice 1944), which is familiar
in the analysis of time-stationary shot-noise (Dodge et
al. 1968), has a generalization to time-dependent shot
noise (Grzywacz et al. 1988). Specialization to a time
dependence that is sinusoidal with low amplitude shows
that the normalized bump amplitude transfer function,
h (w)/hy, can be determined from data as

h(@) _Vi(@2%(0) Ri(@)(0)
ko Vo (w) Rog(w)

where the tilde indicates a Fourier transform, and
where g(f) is the bump time course (see Appendix). This
time course may be estimated from the power spectrum
(Wong et al. 1982). (The straightforward theoretical
derivation of (1) convinces us that the general reserva-
tions expressed by Schnakenburg (1988) do not apply
to the present analysis.)

(1

3 Experimental methods

The preparation, stimulation, and recording under
voltage clamp were as described in the accompanying
article, except as follows. Under computer control, the
intensity of the stimulus was sinusoidally modulated by
varying the LED current. Linear responses were ob-
tained to modulation depths of 40%; we used 25% here.
The computer sampled the responses at 30.5 ps intervals
and stored the averages of 128 successive samples, Cells
were tested with six 30 s runs at each of five intensities,
1log unit apart, which yielded approximately 10 to
10° bumps/s. Before each series at a new intensity, we
allowed the cells to dark-adapt for 15 min, The modula-
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Fig. 1. The bump-amplitude transfer function of a Limulus ventral
photoreceptor. At this background intemsity, an, average of about
10 bumps/s was elicited. The results are displayed in polar coordi-
nates with the clockwise angle from the positive horizontal axis
indicating phase lag and the distance from the origin representing
amplitude.(the dimensionless ratio A, fh,). The unit circle is displayed.
Points 1 through 9 are, in ascending order, the results for the
frequencies 1/256, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, and 2 Hz. Point J,
the “zero-frequency” result, was derived from the steady-state stimu-
lus-response curve as follows: In the intensity range illustrated in this
figure, this curve has the form R =a/", with n <1 (Grzywacz and
Hillman 1988). If the response adaptation is ascribed entirely to the
bump. amplitude, the zero-frequency point may be shown to have
amplitude (1 — #) with phase shift z. In the cell illustrated n 2 (.25,
Note that this transfer fonction has complex features, such as the
“rabbit ears” at frequencies 1/64 and 1/4 Hz. These appeared in all
cells and reflect real features of the transfer function

tion frequencies were 16, 8, 4, 2, 1, 1/2, 1/4, 1/8, 1/16,
1/32, 1/64, and 1/256 Hz. For frequencies above 2 Hz
and intensities above 10* bumps/s, the variance modula-
tion was too small to allow useful noise analysis.

4 Results and conclusions

Figure 1 shows, in polar coordinates, the stimulus-to-
bump amplitude transfer function, {h,(w)/h,}/(1,/1),
estimated from (1) after measurement under voltage
clamp at one intensity. (The polar coordinate, or
Nyquist, display was chosen because in it, various
chemical reactions correspond to different, simplé and
immediately recognizable - curves — see accompanying
article, Grzywacz et al. 1992). This transfer function has
a complicated form, as do those at the other intensities
used, suggesting that there is no simple stepwise con-
nection between stimulus and bump amplitude.
However, division of the stimulus-bump amplitude
transfer function by the stimulus-response transfer
function, which yields the summed response-to-bump
amplitude transfer function {#,(w)/hy}/{R\(@)/Ry}, te-
sults in a much simpler form throughout the lower
frequency range. Figure 2A and B displays this function
for stimuli that elicited on the average about 10 and
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Fig. 2A, B. The feedback transfer function. This is the ratio of the

transfer function of the bump amplitude to that of the mean response.
The points are labeled as in Fig. 1. Under the assumptions of Fig. 1,
the zero-frequency point can be shown to have amplitude (1 —n)/n
and phase shift #. (A) Low background-intensity stimulus eliciting on
the average about 10 bumps/s. A good fit is obtained to the low
frequency data (0 to 1/16 Hz) with the dashed semicircle, which is the
prediction of the model of Fig. 3A with a time constant 7 of 43 s. The
“ 4+ are the predictions of the model at the frequencies of points 0
through 4. B High background-intensity stimuius eliciting on the
average about 1000 bumps/s. A good fit is obtained to the low-fre-
quency data with the dashed curve, which is the prediction of the
model of Fig. 3B with time constants in the range 40-1600 5. Again
the © 4+ are the predictions of the model at the frequencies of points
0 through 4. In both (A) and (B), the high-frequency data exhibit
complex behaviour, indicating the presence of additional fast reactions
controling the bump amplitude (time constants less than 1-2s)

1000 bumps/s respectively. Similar results were obtained
at 100 and 10,000 bumps/s.

The simplicity of the low-frequency behaviour of
these data suggests a casual feedback, from a stage
temporally close to the final output, to the stage that
controls the transduction gain. This simplicity, there-
fore, supports earlier conclusions that light adaptation
is mediated by a negative feedback.

At the lower intensity (Fig. 2A) the low-frequency
data (0 to 1/16 Hz) are well fitted by a semicircle with
one end at the origin and the other on the negative part
of the abscissa. Such a semicircle corresponds to a
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Fig. 3A,B. Models for light-adaptation. In the models described
here, a chain of chemical reactions link photon absorption by
rhodopsin to the ionic channels. One of the enzymatic stages of this
chain is inhibited by the material C. (Evidence suggests that this
material is Ca’t (Lisman and Brown 1972, 1975) and that in
Limulus, four of these ions must cooperate to induce inhibition
(Gryzwacz and Hillman- 1988).) The concentration of C is controlled
by a stage of the chain following the inhibited enzymatic stage. Thus,
C acts through a negative feedback. A The model used to calculate
the dashed semicircle of Fig. 2A. In this model, the cell removes C by
a single enzymatic-like stage. B The model used to calculate the
dashed curve of Fig. 2B. In this model, the cell removes C by multiple
parallel enzymatic-like stages. Such parallel stages may occur if, for
example, the removal rate of C is spatially heterogeneous in the cell

feedback mediated by a chemical agent that is removed
by a single enzymatic-like stage (Grzywacz et al. 1992),
as in the scheme of Fig. 3A. A best fit, as illustrated in
Fig. 2A, is obtained if the decay time constant of this
agent is 43 s.

At the higher intensity, a better fit to the low-fre-
quency data is obtained with a curve resembling a
serni-ellipse with major axis along the abscissa and one
end at the origin. This form is predicted from a scheme
like that of Fig. 3B, in which the feedback agent is
removed by several paraliel enzymatic-like processes
with different time constants {(Gryzwacz et al. 1992).
{Such behaviour occurs if, for example, the removal
rate is spatially heterogeneous within the cell) If a
continuum of paralle]l processes with a flat distribution
of time constants is assumed, a best fit is obtained with
time constants covering the range of 40 to 1600 s. This
fit is shown in Fig. 2B.

Results similar to these were obtained in five other
cells and at two other intensities.

At all intensities, the higher-frequency data depart
from these simple curves and exhibit complex be-
haviour. This indicates the presence of fast additional
processes somewhere in the models of Fig. 3 following
stage E, . ,, possibly in the feedback loop.

Accordingly, we offer a model for the Limulus ven-
tral photoreceptor in which light adaptation is mediated
by a nonlinear (cooperative) negative feedback; the
feedback arises from near the response stage (although
probably not at that stage); the feedback agent is
removed by a single enzymatic-like process at low in-
tensities and several enzymatic-like processes in parallel
at higher intensities; and no other processes with time
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constant longer than about 2 s intervene. The intensity
dependence of the feedback dynamics indicates that the
adaptational state of the cell affects the rates of the
underyling processes.
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Appendix: frequency response for time-dependent
Campbell’s Theorem

The time-dependent Campbell’s Theorem derived by Grzywacz et al.
(1988) yields expressions in the form of the convolution integral, which
expresses a response from weighted part inputs such as:

R = I S(t)gt — 1) dv' = I St—)gt)dr'=8 =g, (1)

where S(¢) is specified below. For functions § and g which vanish for
negative times, the less convenient form of an integral betweeén limits
t'=0 and ¢’ =1 is equivalent. Below we exploit the property that for
constants a and b,

@S, +85) v g =a(S, *2) +b(S; 4 2) . ' @

With Eq. (1), the time dependent Campbell’s theorem states
(Grzywacz et al. Eqs. (1} and (2)) that for Poisson shot arrival rate
A(2), shot time course g(z), and mean shot amplitude A(¢), the ensemble
mean response R(f) and variance V(1) of the shot noise so defined will
be

R = '[ Mt — Wt — g dt = (A = g,
- (3)
Vi) =2 J. Mt = Ot — 1) 2g(1)? b’ = 2ah2) » (g2).

The factor 2 in the variance appears because here we assume at all
times an exponential height distribution for the stochastic variable
whose mean is h, in agreement with observation {Grzywacz and
Hillman 1985).

If the driving input to the system consists of a large constant part
plus a small part which is time-dependent, say

i) =1, + &L, () “@

where ¢ is small, then we may anticipate that variables of the system
will respond similarly:

A = g+ e (8},  h(t) = hy+eh (D),
R)=Ry+eR(e), ¥y =Vo+eh). (3
The products which appear in (3} may be multiplied out:

Ak = (Ao + &y Yhy + &hy) = Aohy + e{dohy + hody) + ...
1h? = (g + 8y YCho + th,)? = dohd + e(Rg - 2hohy + h34,) + ...

where the terms not written are very small, that is, like g2 or 3. Thus
if (5) is substituted into (3) we obtain (to order &)

R+ &Ry = (Aoho + &(Aofy + hodi D) * 8, )]
Vy+ ¥, = Adohd +a(2ohohy + B34, )) » (7).
If ¢ is set to zero, (7) becomes

(6)

Ry =Aghy I gt") dr’ = Aohofy 8

-+

Vo= 24gh} j )24t = 2ighigd,

— ol

where the brief expressions (#,, #2) used to indicate the two integrals
are consistent with further notation which will prove convenient
below. The equations (8) state Campbell’'s theorem in its usual
time-independent form. As the expressions (8) may be substracted
from their corresponding equations in (7) the coefficients of ¢ in (7)
likewise may be equated:
Ri=dg s tho-(li*g)
Vy=ddoho(hy » 8%) +203(4, + 29) .
Division of these expressions respectively by R, and V; now gives
Ri_(hirg) (g
Ry ks b
_~V_1=2(h1 "82)+('11 * g%
Vo o hefd Ao
We may further specialize the input of (4) to a sinusoid with
frequency w/2n:

1,0 = 1, (O)e , an

®

.

(10)

In consequence the perturbations of the several response variables
(Eq. 5) likewise will be sinusoidal at the same frequency. For exam-
ple, the rate equation is:

A{t) = A, (0)e', (12)

and similarly for the other perturbation variables 4,, R,, and ;. In
(12) a phase lag (or lead) in the crest of the output sinusoid, in
comparison to the input, will be observed when 4,(0) is computed
and is found to be a complex number. The assumption (11), and (12)
which foillows it, endow the response Eqs. (10) with quite specific
forms for the convolutions which appear there. For example we see:

o

heg) = J 22(0)6 ~ (s dr
=1, j e iorg(r) &' = 1y(0) - §0) (13)

—a0

(We may recognize that the integral which has appeared and which
we have briefly designatéd as (w), is the Fourier transform of g(r). If
we set w = 0 this reduces to the simple corresponding integral of (8)
which we have annotated as g,.) The equation pair (10) now finally
becomes :
Ri@) b §o) + 4 - flo)

R ke B
Vitw) k- @) 4 Fw)

Vo by 83 A &3
These are a pair of linear simultaneous equations which relate the
pair (R, /Ry, V/V,) to the pair (A, fhy, 4,/4,). They can be solved for

(14

h, /Ry, to yield our text Eq. (1)
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