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Dear Editor,

Ruderman�s letter hinges on two points, which we will
now demonstrate to be unsupportable.

His first point was based on our use of a limited range

of spatial frequencies for estimating power spectra. For

instance, we used such a range in our calculation of the

power spectra of his occlusion-based images with ex-

ponential correlation (Balboa, Tyler, & Grzywacz, 2001;

Ruderman, 1997). In this range (from 5 to 250 cycles/

image), these images produced spectra consistent with
published data on natural images. In other words, the

ensemble produced spectra that fell as f �a, where f was

spatial frequency and a a constant parameter. (Such a
fall is often called scaling.) To mount a counterargu-

ment, he built one of his occlusion-based images and

showed that the spectrum did not fall at low frequencies.

His point was that our spectra only appeared to fall

as f �a because we plotted them over a limited range of
frequencies. He then said, ‘‘spectra of natural images. . .
have demonstrated scaling. . . over their entire frequency
range’’, thus claiming to have refuted our conclusions.

We agree with him that occlusion-based images will

often be flatter at low frequencies. We even point this

out in our paper.

However, we do not agree that spectra of natural

images fall as f �a over the entire frequency range. Some
authors who claim scaling in natural images present

spectra in ranges of spatial frequencies that are even

narrower than the one we use (Field, 1987). Other au-

thors who use a larger frequency range report significant

curvatures in double-logarithmic plots of their spec-

tra (Dong & Atick, 1995; Tolhurst, Tadmor, & Chao,

1992). These curvatures are similar to those that we

predict in our paper.
Moreover, when Ruderman speaks about ‘‘the entire

frequency range’’, he is speaking loosely, but he pre-

sumably means that one should look at the entire

available frequency spectrum. In other words, one

should use frequencies as low as 1 cycle/image. The

trouble is that, in this case, the size of the image is

what determines the lowest spatial frequency that one

can measure. What would happen if one could measure
spectra from larger images? To understand what would

happen in principle, one must assume an infinitely large

image, which would allow us to measure power at ar-

bitrarily low frequencies. In this case, it is possible to

calculate the integral of the power spectrum from f ¼ 0

to F . This integral is the contribution to the variance
attributed to frequencies within this interval. This par-
tial variance is

r20;F ¼
Z F

0

df 2pfP ðf Þ; ð1Þ

where P ðf Þ is the rotationally averaged power spectrum.
If, as asserted by Ruderman, P ðf Þ ¼ kf �a over the

‘‘entire frequency range’’, and if a > 2, as is the case for

about half of natural images, (Field, 1987; van der

Schaaf & van Hateren, 1996), then

r20;F ¼ lim
e!0

Z F

e
df 2pf

k
f a

¼ 1: ð2Þ

In other words, the variance would be infinite, which is

inapplicable to natural images. Hence, if one could

measure the power spectrum of a natural image literally

over the ‘‘entire frequency range’’, then this spectrum

would have to become flatter than f �a at low spatial

frequencies. Flattening at low frequencies is the only

way to prevent the variance from diverging to infinity.
This is the behavior that Ruderman shows in Fig. 2 of

his letter and which we discuss in our paper.

However, Ruderman may say that this argument

is beside the point, because images are never infinitely

large. But this is only a practical matter. In principle,

images can be built to encompass arbitrarily large fields

of view. For instance, in photographic cameras, images

form in a focal plane where the film or the electronic
sensors reside. In principle, this plane could be infinite,

allowing the entire infinite world to be captured by

the image. Of course, this does not happen in practice,

because films are finite, and because lenses have small

fields of view or distort the images. However, there is no

reason why one could not build arbitrarily large films.

Furthermore, one can circumvent the lens limitation by

using a pinhole camera. Such cameras can form well
defined, practically undistorted images across an ex-

tremely wide angular field and over a large range of

distances (Hecht, 1998). The problem with these cam-

eras is that they require long exposure times. Never-

theless, there is nothing to prevent exposure times from

being arbitrarily large and nothing to prevent using

different exposure times in different parts of the image if

necessary.
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Consequently, because images can in principle be

arbitrarily large, the issue is not whether natural spectra

become flatter at low frequencies, but at what frequency
they begin to do so. The only reason that such flattening

is not observed in some studies is that they use a con-

strained range of frequencies, due to the physical limi-

tation of their cameras. Commercially available cameras

have notoriously small fields of view. Therefore, there is

no hope that one can measure power at very low spatial

frequencies with such cameras. To be completely fair,

one should publish spectra with frequencies expressed in
cycles/deg not cycles/image. In Ruderman�s own work,
the lowest spatial frequency is about 0.06 cycle/deg

(Ruderman & Bialek, 1994). If this corresponds to 1

cycle/image, then his images have fields of view of only

about 17�. This is much smaller than the fields of view
of biological systems, which thus have access to much

lower spatial frequencies than he measured.

Under such limited range, Ruderman�s occlusion-
based images with exponential correlation do indeed

have power spectra that fall as f �a. However, he pro-

vides no argument against the spectra becoming flatter

at the lowest frequencies.

Ruderman�s second point relates to Eq. (4) of our

appendix. That equation considers a one-dimensional

(1D) cut of an occlusion-based image. Such an image

consists of M regions of uniform intensity such that the
jth region spans xj 6 x6 xjþ1 and its intensity is ÎIj. Eq.
(4) of our appendix is the power spectrum of this cut,

namely,

eII ðf Þ�� ��2 ¼ 1

ð2pf Þ2
XM
j¼1

ÎIj ei2pfxjþ1
������ � ei2pfxj

������
2

: ð3Þ

According to this equation, as the spatial frequency

increases, the power spectrum tends to fluctuate (the

parenthetical term on the right hand side), but its en-

velope falls in inverse proportion to the square of the

frequency (the 1=f 2 term). The only exception occurs at
very low frequencies, that is, when 2pf � 1=ðxjþ1 � xjÞ
for all j. For those frequencies, one can approximate the
term inside the parenthesis with the first term of the

Taylor series, yielding

eII ðf Þ�� ��2 	 XM
j¼1

ÎIj xjþ1
������ � xj

�
ei2pfxj

�����
2

: ð4Þ

In other words, for frequencies so low that the corre-

sponding periods are longer than the longest step in the

1D cut, the envelope of the power spectrum tends to

remain constant with frequency. Ruderman�s criticism
begins with the observation that a two-dimensional

spectra that falls as f �a has 1D cuts with spectrum that

fall as f �ðaþ1Þ. He then concludes, ‘‘the approximation

presented by Balboa et al. does not match the spectral

behavior seen in the natural image ensembles’’. How-

ever, there are two problems with this conclusion: First,
we demonstrated above that it is impossible for natural

images to have an f �a spectrum over the ‘‘entire fre-

quency range’’. Therefore, there is no reason to believe

that spectra of 1D cuts fall as f �ðaþ1Þ over the ‘‘entire

frequency range’’. We argued based on Eq. (2) that a

flattening should occur at low frequencies, which is what

Eq. (4) expresses. Second and more disturbing for Ru-

derman�s arguments, Eq. (3) is not an approximation.
Rather, it is the general power spectrum of a 1D cut

of an occlusion-based image. And the approximation

of this equation by Eq. (4) is unavoidable when f ! 0.

Consequently, the power spectrum of a 1D cut of most

finite occlusion-based image is flat at low frequencies

and fall as frequency squared at high frequencies. But

this is essentially the first half of Ruderman�s own model
(Ruderman, 1997). When he states, ‘‘natural images. . .
are collages of regions corresponding to statistically in-

dependent objects’’, he means that these regions have

relatively homogeneous properties, such as practically

constant intensities. Hence, by criticizing the conclu-

sions obtained with Eq. (4) in our appendix, he is criti-

cizing the first half of his model.

In summary, both of Ruderman�s arguments against
our paper are contestable. Despite what he says, we
showed that when the frequency range of power spectra

is broad, they must become flatter than f �a at low fre-

quencies. In addition, we showed that Eq. (4) of our

appendix, which Ruderman criticizes, applies to his own

model. Fortunately, his criticism is not valid, as one

cannot assume scaling over the entire frequency range.

We agree with Ruderman when he states, ‘‘discover-

ing which properties give rise to. . . statistical regularities
[of the natural environment] is of great importance. . .
for understanding the design of visual systems (Simon-

celli & Olshausen, 2001).’’ Much of our recent work has

been in this direction (Balboa & Grzywacz, 2000a,b,c;

Grzywacz & Balboa, 2002). The question here is not

whether natural statistics are important, but what are

the most relevant ones. In our paper, we suggested

that much of power-spectra scaling could be explained
by taking into account the power spectrum of occlusion

edges. We also suggested that the importance of the

distribution of object sizes, as postulated by Ruderman,

is an empirical issue that remains to be rigorously

demonstrated.

Sincerely,
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