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Decisions based on uncertain information may benefit from an
accumulation of information over time. We asked whether such an
accumulation process may underlie decisions about the direction of
motion in a random dot kinetogram. To address this question we
developed a computational model of the decision process using
ensembles of neurons whose spiking activity mimics neurons
recorded in the extrastriate visual cortex (area MT or V5) and a
sensorimotor association area of the parietal lobe (area LIP). The
model instantiates the hypothesis that neurons in sensorimotor
association areas compute the time integral of sensory signals from
the visual cortex, construed as evidence for or against a proposition,
and that the decision is made when the integrated evidence reaches
a threshold. The model explains a variety of behavioral and physio-
logical measurements obtained from monkeys.

Introduction
A hallmark of higher brain function is a capacity to act and sense
on different time scales. This capacity allows organisms to
acquire sensory information from one or more sources, combine
information across time, and alter their behavior some time
later, perhaps contingent on other intervening input. This
contrasts with simpler reflexive behaviors in which sensory
information precipitates an immediate motor response. From
this perspective, the capacity for higher brain function would
seem to rest on the brain’s ability to accumulate, combine and
preserve information over time.

The persistent spike activity that is commonly observed from
neurons in the association cortex is thought to provide a neural
substrate by which information can span such time gaps. It has
been implicated in working memory (Fuster and Alexander,
1971; Fuster, 1973; Miyashita and Chang, 1988; Funahashi et al.,
1989), motor planning (Evarts and Tanji, 1976; Bruce and Gold-
berg, 1985; Gnadt and Andersen, 1988) and decision making
(Kim and Shadlen, 1999; Shadlen and Newsome, 2001; Hern-
andez et al., 2002). A reasonable hypothesis is that such
persistent activity represents the outcome of a process of integ-
ration with respect to time — that is, the accumulation and
storage of information. By analogy to neural integrators in the
brainstem that convert eye velocity to position (Robinson, 1989;
Fukushima et al., 1992), our hypothesis is that cortical neural
integrators combine evanescent sensory data to generate an
evolving conception about the state of the world, which can
then be used to plan appropriate behaviors.

In this paper we explore the idea that the accumulation of
sensory information underlies a simple perceptual decision. We
review evidence suggesting that rhesus monkeys make decisions
about the direction of random dot motion by integrating, with
respect to time, the information they receive through direction-
selective neurons in the visual cortex. We test this idea by devel-
oping a model of a neural circuit that we believe may perform

such a computation. The model encompasses three stages of
neural processing: (i) the representation of visual motion by
ensembles of direction-selective neurons; (ii) the representation
of a decision variable by ensembles of neurons that accumulate
input from the first stage; and (iii) a comparison to threshold,
which terminates the process and determines the model’s
choice. The neurons that comprise the first stage are based on
the known properties of neurons in area MT. The second and
third stages of the model predict the response properties of
neurons in LIP and behavioral measurements obtained from
monkeys. Our results show that temporal integration can
explain a fairly wide range of behavioral and physiological obser-
vations, suggesting that this simple computation may play an
essential role in sensorimotor decisions.

Background
The processes underlying sensorimotor decisions in humans and
monkeys have been investigated using a motion discrimination
task (Fig. 1) (Britten et al., 1992; Britten, 2003). The sensory
stimulus in the task consists of a dynamic display of dots which
appear and disappear at random locations within a 5–10°
circular aperture. A fraction of these dots are displaced at some
fixed offset to impart an overall sense of motion in one direction
or its opposite (e.g. left versus right). The subject’s goal is to
discriminate between these two alternatives. Rhesus monkeys
are trained to indicate their choice of direction by making a
saccadic eye movement to one of two targets, corresponding
to the two motion directions. If the fraction of moving dots,
termed the percent coherence, is sufficiently high, it is easy to
identify the correct direction. By controlling the percent coher-
ence, the task can be made arbitrarily difficult or easy.

In this study we refer to two versions of the random dots task.
In the reaction time (RT) task (Fig. 1A), subjects are allowed to
report their decision as soon as they are ready, once the random
dots appear. In the fixed duration (FD) task (Fig. 1B), subjects
view the random dot motion stimulus for a specified duration
(usually 1 or 2 s) that is under the control of the experimenter.
In the FD task, motion viewing is typically followed by a
memory/delay period before the subject is allowed to respond.

The motion information in the random dots task is repre-
sented by direction selective neurons in the extrastriate visual
cortex, especially area MT (also known as area V5). When
random dot motion appears in the receptive field of an MT
neuron, there is a large initial burst followed by a sustained
response whose magnitude depends on the strength and direc-
tion of motion (Fig. 2A). Evidence from microstimulation,
lesion, and neural recording experiments demonstrate that such
responses underlie the monkey’s judgment in the random dots
task (Newsome and Paré, 1988; Salzman et al., 1990; Britten et

al., 1992, 1993, 1996; Bisley et al., 2001; Britten, 2003). In
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particular, the animal’s ability to discriminate weak motion
appears to be limited by variability in the response of MT
neurons (Parker and Newsome, 1998). The responses of MT
neurons provide the evidence upon which the monkey bases its
decision about direction, but they do not gather this evidence
together to form a decision. Their activity fluctuates with each
passing random dot and the evidence they provide is as evanes-

cent. To reach a decision, other neurons must ‘read out’ the
evidence from area MT.

Less is known about how sensory responses are read out and
interpreted in order for the brain to reach a categorical decision.
In the motion discrimination task described above, a decision
about motion is linked to an eye movement response. Therefore,
neurons that represent a plan to move the eyes to a particular
place in space are potential sites for the representation of a
decision about motion direction. Such neurons have been found
in the parietal cortex, prefrontal cortex and superior colliculus
(Wurtz and Albano, 1980; Gnadt and Andersen, 1988; Funahashi
et al., 1989; Glimcher and Sparks, 1992). These neurons exhibit
persistent activity when the monkey is instructed to plan an eye
movement to a restricted part of the visual field, termed the
response field (RF) (Fig. 2B). In the random dots task, these
neurons have been shown to represent information about the
monkey’s decision (Shadlen et al., 1996; Kim and Shadlen, 1999;
Horwitz and Newsome, 2001; Shadlen and Newsome, 2001;
Roitman and Shadlen, 2002). Here, the direction of motion effec-
tively instructs an eye movement to one of a pair of choice
targets (Fig. 1). When the monkey decides that the direction is
the one indicated by an eye movement to the RF, the spike rate
gradually increases (Fig. 2C). For the opposite decision, the
spike rate declines during the period of motion viewing. Such
activity represents the evolving plan of how to answer the
question, ‘Which direction is the motion?’

In this study we use simulated neural responses to test the
notion that temporal integration of sensory signals from area MT
forms the basis for direction discrimination in the random dots
task, and that neurons with persistent activity preceding eye

Figure 1. Direction discrimination tasks. Monkeys are trained to discriminate the
direction of motion in a dynamic random dot display. An eye movement signals the
choice of direction. Task difficulty is governed by the fraction of coherently moving
random dots. (A) Reaction time (RT) task. The subject is allowed to respond at any time
after the onset of random dot motion to indicate the direction of perceived motion. The
reaction time (RT) is measured as the time between motion onset and the initiation of
the saccade. (B) Fixed duration (FD) task. The experimenter controls the duration of the
random dot motion, which is typically 1 or 2 s. In some experiments, the subject
maintains fixation through a variable delay period after the motion stimulus is
extinguished. The instruction for the response is the disappearance of the fixation point,
after which the monkey makes an eye movement to one of the targets to indicate the
direction of perceived motion. In Roitman and Shadlen (2002), RT and FD tasks used
different fixation point color and were performed in alternating blocks.

Figure 2. Responses of neurons in areas MT and LIP. (A) Response of a direction selective MT neuron in the direction discrimination task. The random dot stimulus was centered
on the neuron’s receptive field (RF). The direction of motion was either in the best direction for activating the neuron, called the preferred direction, or in the opposite direction, the
null direction. Spike rasters from individual trials and peristimulus time spike rate averages are shown for a strong motion stimulus (51.2% coherence) and a weak motion stimulus
(6.4% coherence). Mean spike rate is calculated in 20 ms bins. The solid line in each panel shows the time of onset of the random dot motion. These data were recorded in a 2 s
FD version of the task (Britten et al., 1992). Data obtained from the Newsome database (http://www.cns.nyu.edu/∼wyeth/data/newsome/newsome.html). (B) Response of an LIP
neuron in a memory guided eye movement task. In this task a target is flashed on and off in the periphery. The monkey must make an eye movement (sac) to the remembered
location of the target after a variable delay. In some locations, the onset of the target evokes a response from the neuron that is maintained until the time of the saccade, even
when the target is absent. This location is designated as the neuron’s response field (RF). The panels show the responses of an LIP neuron when the target appears in the neuron’s
RF and when it appears in the opposite hemifield. The data format is the same as in (A). The solid line indicates the onset of the target, and the filled triangles show the times of
the saccade. Mean spike rate is calculated in 30 ms bins. Adapted from Shadlen and Newsome (2001). (C) Response of an LIP neuron in the direction discrimination task. The visual
objects were arranged so that one of the two choice targets appears in the neuron’s response field (RF) and the other target and the random dot motion appear outside the RF. The
panels show responses when the motion instructed eye movements into the RF or away from the RF, for strong motion (51.2% coherence) and weak motion (6.4% coherence). The
data are shown in the same format as in (A) except that the spikes and the mean spike rate are aligned relative to the time of the saccade (indicated by the solid vertical line). The
filled triangle shows the time of motion onset in the trial. These data were collected while the monkey performed the RT motion discrimination task. The trials are arranged by
ascending reaction time, which is the time between motion onset and saccade initiation. Mean spike rate is calculated in 20 ms bins. Adapted from Roitman and Shadlen (2002).

http://www.cns.nyu.edu/%E2%88%BCwyeth/data/newsome/newsome.html%00%00
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movements represent this integration. For the latter, we focus
on neurons in the lateral intraparietal area (LIP), which have
been studied using both FD and RT versions of the task. We
begin by simulating the well-described responses of MT neurons
to random dot motion, and we model LIP responses as a simple
time-integral of the difference from opposing pools of MT
neurons. We simulate two ensembles of LIP neurons, one for
each of the possible eye movement responses. The decision is
made when the activity of one of the LIP ensembles exceeds a
critical value, that is, when the evidence reaches a threshold.
The model furnishes several novel interpretations of behavioral
and physiological measurements obtained using the random
dots task.

The electrophysiological and behavioral data in this paper
have been described in earlier publications (Britten et al., 1992;
Shadlen and Newsome, 2001; Roitman and Shadlen, 2002).

Model Design

The goal of this modeling exercise is to investigate how well
integration of sensory signals can account for behavioral and
neural data obtained in the random-dot motion task. We address
this question by simulating the responses from two brain
regions: the middle temporal area (MT or V5) and the lateral
intraparietal area (LIP) (Fig. 3). Each brain region consists of an
ensemble of simulated cortical neurons whose firing rates are
determined by the model but whose actual spike times are
random.

The model is divided into three stages: representation of the
evidence, accumulation of the evidence into decision variable,

and comparison of the decision variable to threshold (choice).
In the first stage, we simulate the responses of two opposed
pools of direction selective MT neurons to random dot motion
of varying motion strength. For simplicity, all simulations
assume that the motion is either to the right or to the left. Each
neuron in the two pools produces a sequence of spikes with an
expected rate proportional to the strength of motion, based on
values from Britten et al. (1993). The averaged spike rate from
the two pools furnishes the output of stage 1.

In the second stage we simulate the responses of two pools of
LIP neurons. One of the LIP pools represents a plan to choose
the right choice target (Fig. 3, LIPright choice), whereas the other
represents the opposite plan (Fig. 3, LIPleft choice). Unlike the MT
neurons, the expected firing rates of these neurons are time-
dependent, determined by the time integral of the difference in
the output of the right and left MT pools. The expected LIP
firing rate is calculated by integrating the difference in spike rate
signals from MT starting from when the coherence-dependent
MT response begins (δMT), then delaying the result by δLIP; we do
not simulate the LIP response before the integration begins at
time δMT + δLIP. Because of the temporal fluctuations in the
responses of the MT pools [  and ; see equations A1 and
A2, Supplementary Material], the expected LIP responses
[  and , equations A3 and A4, Supplementary
Material] exhibit random deviations around the motion-
dependent drift, similar to a biased diffusion process. As with
the MT stage, the averaged spike rate from the two pools of LIP
neurons furnishes the output of this stage of the model.

Figure 3. Model of the decision process. The input to the model is a two-parameter description of the random dot motion stimulus shown on one experimental trial: direction and
strength (% coherence). The model predicts the behavioral choice (left or right) and the response time. It also represents neural activity which is intended to simulate the responses
of direction selective neurons in area MT and decision related neurons in area LIP, as shown in Figure 2. The elements shown in the schematic correspond to mathematical
operations that are believed to underlie the neural and behavioral responses. The order of several (linear) operations can be combined or exchanged, but the grouping into stages
(colored background) corresponds to sensory representation, accumulation of evidence for two competing hypotheses, and comparison of the accumulated evidence to a threshold.
Labels below the elements in the schematic show the variable names which appear in the text equations; corresponding values are given in Table A1 (Supplementary Material).
The schematic demonstrates a trial with strong rightward motion. Each Neural simulation block shows simulated spikes from 10 neurons (tic marks) and the smoothed average
spike rates from the full ensemble of 100 simulated neurons (solid curves). The Race to threshold elements show the smoothed average rates from the two LIP ensembles racing
against each other toward the decision threshold; * indicates the time of decision in the winning LIP.
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For simulations of the reaction time (RT) task, the LIP
responses are compared to a decision threshold. The two
ensemble average spike rates are smoothed using a first order
filter with time constant τLIP = 0.1 s in order to tame the moment-
to-moment fluctuations. The smoothed LIP signals race against
each other to provide the weight of evidence for their preferred
choice direction. The first to reach the decision threshold, θ,
determines the target choice and the decision time. A random
time is then added before saccade initiation. Note that the
reaction time in a trial is the sum of decision time plus the non-
decision intervals [saccadic latency, δMT and δLIP, amounting to
∼300 ms non-decision time on average (Luce, 1986)].

For simulations of the fixed duration (FD) task, the decision is
generated in one of two ways. In the first method, LIP signals are
allowed to integrate for the full duration of the simulation. The
decision in this case is determined by simply comparing the
value of the smoothed LIP signals corresponding to the two
possible choices: whichever one is higher at the end of the trial
determines the choice. In the second method, a decision
threshold (θ) is applied, and if one of the LIP signals crosses θ,
the decision is determined as in the RT simulation. If neither LIP
signal crosses θ by the end of the simulation, the decision is
determined by whichever of the LIP signals is higher.

A complete description of the model parameters along with a
justification of the values we used can be found in the Supple-
mentary Material. Importantly, although there are many parame-
ters, most are constrained by measurement. The threshold, θ, is
the only parameter in the model that was fit to match behavioral
accuracy (see Supplementary Material).

Results

We developed a model consisting of ensembles of spiking
neurons in order to simulate a process of decision formation in a
two-alternative forced choice direction discrimination task. The
model represents motion ‘evidence’ in the response of ensem-
bles of simulated MT neurons, and it represents the accumula-
tion of this evidence in the response of ensembles of simulated
LIP neurons. The commitment to one or the other alternative is
based on the read out of the ensemble spike rate signals in area
LIP. Figure 3 shows examples of the smoothed ensemble-
average firing rates for MT (blue) and LIP (red). The filters used
to smooth the firing rates in this figure, as well as the relative
height of θ, are the same as those used to produce the predic-
tions in this study. Note that the smoothed LIP signals, which
function to determine the time and direction of the decision,
possess a sizeable degree of temporal noise resulting from both
the variability of neural spiking and a weak tendency for pairs of
neurons to emit spikes within ±10 ms of one another (Mazurek
and Shadlen, 2002). This temporal noise is not a consequence of
variability in the visual stimulus or in the input from MT, but
rather it is inherent in the decision signal.

The results are presented in three parts. First, we compare the
predictions of the model to behavioral and physiological data
obtained in the reaction time (RT) direction discrimination task,
where the subject responds as soon as they arrive at a decision.
We then test whether the assumptions of the model hold in the
fixed duration (FD) task, where subjects must view the motion
stimulus for a specified duration. Finally, we examine the predic-
tions of the model for the relationship between single unit
responses and behavior.

Reaction-time Direction Discrimination
The combined measurement of RT and perceptual choice
permits an examination of the neural responses that underlie
decision formation in the time frame used by the animal to solve
the task. The task furnishes two behavioral measures, choice
and response time, which must be accounted for by a model of
the decision process.

Behavior: Accuracy and Decision Time

The model in Figure 3 works by integrating the sensory
evidence — the difference in ensemble spike rates from area MT
representing the alternative directions — toward a threshold
level (θ). The level of this threshold controls the model’s accu-
racy: a higher threshold requires more evidence to be accumu-
lated before a response, leading to fewer errors than would be
obtained with a lower threshold. Importantly, θ is the only
parameter in the model that was fit to behavioral data. We
adjusted θ to match the overall accuracy seen in the monkey. At
this level, the model produces a psychometric function with
similar shape to that measured experimentally (Fig. 4A).

To achieve this level of accuracy in the model, θ = 55 spikes/s,
which is 15 spikes/s above the simulated baseline (see Fig. 5B).

Figure 4. Behavior of monkey and model in the RT task. The data from the monkey
show averages from all experiments for which there are LIP recordings in the RT task.
(A) Psychometric functions. The percentage of correct choices is plotted as a function
of motion strength (% coherence). The black points show data from the monkey. The
gray points show predicted accuracy from the model. Sigmoid curves are best fitting
Weibull functions, p = 1 – 0.5exp(–[C/α]β), where C is the motion strength and α and
β are the threshold and slope of the Weibull function. The average accuracy across all
conditions is 80% correct for the monkey. This is the target for setting the decision
threshold (θ) in the model (see Model Design). (B) Chronometric functions. Reaction
time is plotted as a function of motion strength. Reaction time is defined as the time
from motion onset to saccade initiation. Black points show data from the monkey;
correct and error trials are as indicated. Error bars (±1 SEM) are smaller than the points
for the correct data. Gray points show predicted mean reaction times from the model.
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The particular values for spike rate are not critically important
for explaining accuracy since they reflect our choice for the
baseline spike rate ( ) and the scaling of the integral (k),
which were chosen to mimic the response of neurons in LIP
(see next section). More fundamentally, the excursion from
baseline to threshold amounts to a net excess of ∼3 spikes per
MT neuron from the rightward- or leftward-preferring pool. This
characterization of the decision threshold holds regardless of
the particular values for  and k. Importantly, the same
value for θ is applied for all motion strengths.

With the decision threshold fixed to approximate the
monkey’s overall accuracy, the model predicts the amount of
time it takes to reach a decision. Reaction times for monkey and
model are depicted in Figure 4B as a function of motion strength
(the chronometric function). For correct choices (Fig. 4B, solid
lines), the predicted mean RTs closely match the mean RTs
observed in the monkey. Of course, the total RT includes delays

besides the decision time (i.e. visual latencies δMT and δLIP and
saccade preparation time) whose properties are not well under-
stood, so the precise values of RT predicted by the model should
be taken as approximations. More significant is the observation
that RTs in the model decrease with motion strength in a similar
manner to that seen in the data, despite the fact that the non-
decision times in the model are independent of coherence. This
suggests that the dependence of RT on motion strength arises
primarily from different rates of evidence accumulation at
different coherences.

While integration to threshold accounts for accuracy and RT
on correct choices, it fails to account for the pattern of RT on
error trials. As shown in Figure 4B (gray curves), the model
predicts that error RTs will be faster than correct RTs at each
coherence, which is inconsistent with data (black curves).
These fast errors appear to be caused by early threshold cross-
ings, which are caused by the instantaneous fluctuations in the
model LIP activity. We will consider possible solutions to this
shortcoming in Discussion. Such errors constitute only ∼14% of
trials.

LIP Physiology

According to our hypothesis, neurons that represent the read-
out of area MT compute the integral of the difference between
opposing direction signals. Here we examine how well this
idea predicts neural responses seen in area LIP. Figure 5 shows
averaged responses from 54 neurons in area LIP recorded during
the combined direction-discrimination RT task (Roitman and
Shadlen, 2002). Recall that the task is arranged so that one of the
choice targets is in the neuron’s RF. The responses increase
gradually before saccades to the target in the RF, and they
decrease gradually before saccades to the target outside the RF
(Fig. 5A). The rate of increase or decrease initially depends on
the motion strength: when responses are aligned to the onset of
the motion (Fig. 5A, left panel), the spike rates diverge more
rapidly for strong motion than for weak motion. This part of the
graph emphasizes the epoch of decision formation. When we
focus instead on the epoch immediately preceding the behav-
ioral choice (Fig. 5A, right panel), the dependence of the
responses on motion strength appears greatly reduced. Indeed,
on trials when the monkey chose the target in the RF (solid
curves), the responses appear to converge to a common point,
independent of the motion coherence. In summary, the data
show that (i) different strengths of motion result in different
rates of accumulation; and (ii) the responses converge to a
common point before decisions that motion is toward the RF
but not before decisions in favor of the opposite direction.
These properties are explained by the model.

The model produces a family of predicted LIP responses that
displays many of the same properties as seen in neural record-
ings from LIP. Figure 5B shows the simulated responses of LIP
neurons that would signal a rightward choice. In other words,
the RF of these model neurons is aligned to the rightward choice
target. When aligned to the onset of motion (Fig. 5B, left panel),
the average spike rates of these model neurons trace out ramp-
like linear trajectories. The slopes of the ramps are positive
(increasing) for trials leading to rightward choices and negative
(decreasing) for leftward choices, and the ramps are steeper for
stronger motion than for weaker motion. When the responses
are aligned to the time of the motor response (Fig. 5B, right
panel), the increasing responses for rightward choices look
nearly identical, whereas responses associated with leftward

Figure 5. Time course of LIP responses in the RT direction discrimination task. (A)
Average spike rate from 54 LIP neurons. Responses are grouped by motion strength
and choice as indicated by color and line type, respectively. The left portion of the graph
shows responses aligned in time with the onset of random dot motion (vertical line).
The responses in this portion of the graph are plotted up to the time of the mean
reaction time at that coherence, excluding any activity within 100 ms of saccade
initiation. The right portion of the graph shows responses aligned in time with the
initiation of the saccadic eye movement response (vertical line). The neural responses
in this portion of the graph are plotted back in time from the saccade up to the mean
reaction time for that coherence, excluding any activity within 200 ms of motion onset.
The spike rates are smoothed with a running mean (±30 ms). Error trials are not
included in this analysis. Adapted from Roitman and Shadlen (2002). (B) Responses of
model LIP neurons. The simulated responses are graphed using the same conventions
as in (A). The model output is undefined in the first 200 ms after onset of motion and in
the epoch after the decision is made. The horizontal dashed line shows the height of
the decision threshold (θ), 55 spikes/s.
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choices do not achieve a stereotyped level of activity but instead
retain their dependency on motion strength.

These properties are explained by the underlying computa-
tions in the model. Responses aligned to the beginning of the
trial reflect the integral of the difference between rightward- and
letward-preferring MT ensemble responses. Because the magni-
tude and sign of the MT difference signal varies with the
strength and direction of motion, the average rate of rise or
decay in the LIP response also depends on motion strength and
direction. In contrast, during the time period immediately
preceding the motor response, the responses of rightward-
choice LIP neurons during rightward-choice trials appear similar
for all motion strengths. This is because the responses are
constrained to cross a common decision threshold ∼100 ms
before saccade initiation regardless of whether the threshold
was approached slowly or quickly. Indeed, the precise moment
of this crossing is often determined by a brief upward fluctu-
ation in the ensemble LIP signal. On the other hand, rightward-
choice neurons are not constrained to cross a common
threshold during leftward choices because decision time in that
case is governed by the opposing population of LIP neurons,
whose RFs align with the left-choice target. Thus, the average
responses from rightward-choice neurons (dashed curves)
retain a dependency on motion strength even at the end of the
decision process culminating in a leftward choice. The model
thus explains this puzzling asymmetry that is evident in the data
(Fig. 5A).

One somewhat surprising observation is that the simulated
response rates achieve peak values well above the decision
threshold θ (Fig. 5B, right panel). This occurs because the LIP
ensemble activity is smoothed in the formation of the decision
signal, which is then compared to decision threshold. Such
smoothing delays the growth of the decision signal relative to
the spike rates of the neurons within LIP. As a result, the spike
rates of single LIP neurons continue their trajectory beyond the
threshold by the time the decision is made. The degree of over-
shoot depends on the value of τLIP, but the effect is seen with
even modest smoothing. For τLIP =100 ms, the model achieves
spike rates of 65–70 spikes/s at the end of the simulation,
∼100 ms before the saccade, similar to the spike rates seen in the
data at this time.

Fixed-duration Direction Discrimination

Accuracy

Up to this point we have mainly discussed the reaction time
version of the random dot motion task, where subjects report
their decision as soon as possible. Random dot motion discrim-
ination has been studied more extensively under conditions in
which the subject views the motion stimulus for a duration that
is controlled by the experimenter. In these ‘fixed duration’ (FD)
experiments, it is commonly assumed that the subject makes a
decision using all the available motion information — that is, that
the decision occurs after the motion is turned off. This idea
receives experimental support, especially for short stimulus
durations in the range of 100–800 ms (Gold and Shadlen, 2000;
see also Britten et al., 1992; Burr and Santoro, 2001). This
assumption leads to one obvious prediction: accuracy in 1 s FD
experiments should be better than the accuracy in RT experi-
ments because the animals typically view motion for less than a
second in the RT task.

However, the experimental evidence contradicts this predic-
tion. Figure 6A shows psychometric functions obtained from
experiments in which monkeys alternated blocks of trials in the
RT task with blocks of trials in a 1 s FD task. The fits are very
similar; in fact, performance on the FD task is slightly worse
(P < 0.05). This is remarkable considering that the monkey took
an average of only 680 ms to initiate an eye movement response
in the RT task. Subtracting out visual latencies and motor prepar-
ation time, this finding implies that the monkey performed
about equally well in the RT task as it did in the FD task even
though it had about half the viewing time. Clearly, this is at odds
with the most straightforward version of the integration model.
If the monkey has twice the viewing time, we would expect an
improvement in signal to noise of ∼√2, which would translate to
a left shift of the PMF by about this same amount (Fig. 6B).

The remarkable similarity between PMFs on the RT and 1 s FD
tasks raises the possibility of a common mechanism. Suppose
that instead of using all available evidence during the 1 s motion
viewing period, the brain accumulates evidence to a threshold,
just as in the RT task, and thereafter stops incorporating motion
evidence into the decision variable. This idea, first proposed by
Link (Link and Heath, 1975; Link, 1992), leads to several predic-
tions about behavior and neural activity.

First, the hypothesis that both RT and FD tasks use the race-to-
threshold mechanism predicts that the performance in the FD

Figure 6. Comparison of accuracy in RT and FD tasks. (A) Psychometric functions from
alternating blocks of RT and 1 s FD experiments. Data are averages from all
experiments in two monkeys (see Roitman and Shadlen, 2002). Accuracy was slightly
better on the RT task (P < 0.05). Sigmoid functions are best fitting Weibull functions.
(B) Model predictions. The dashed curve shows predicted performance based on the
assumption that sensory information is integrated throughout the 1 s period of motion
viewing. The two curves that nearly superimpose are predictions based on the
integration-to-threshold model. For the FD task (dotted curve), a decision is made as if
the monkey were surreptitiously performing the RT task (see Model Design). The solid
curve is the same as in Figure 4A.
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task should be similar to that obtained in the RT task so long
as the decision threshold (θ) is the same (Fig. 6B; compare
RT prediction against the FD prediction for integration to
threshold). In fact, accuracy should be slightly worse on the FD
task because a decision must be rendered from 1 s of stimulus
viewing, even if the evidence is <θ. In principle, there is no
reason to set the threshold to the same level for both FD and RT
tasks, but we suspect that this occurs because the monkeys
performed RT and FD experiments in alternating blocks of trials
on the same day. The critical point is that even when given a
fixed amount of time to solve the task, the monkey might
operate in the same fashion as in the RT task. We next consider
the implications of this hypothesis for neural activity in LIP.

LIP Physiology

Figure 7A (adapted from Roitman and Shadlen, 2002) shows the
responses of LIP neurons recorded in 1 s FD experiments; these
are the same neurons whose responses in the RT task are plotted
in Figure 5A. The responses during FD trials begin with trajecto-
ries that are similar to those recorded in RT trials, but as time
ensues, the response begins to flatten, eventually reaching a
plateau rate whose magnitude depends on the strength of the
motion. The pattern is best seen in the larger data set of Shadlen
and Newsome (2001), shown in Figure 7B, using viewing dura-
tions of 0.5, 1 and 2 s.

The model predictions are shown in Figure 7C. To obtain
these predictions we used the same architecture as in the RT
simulations, with one exception: when the evidence reaches
the decision threshold (θ), the accumulation stops, and the
spike rate is fixed at the level it has achieved. Under these
assumptions, the responses of model neurons demonstrate the
features described above (Fig. 7A,B). The fact that LIP responses
plateau at different rates for different coherences may seem
counterintuitive: why are the trajectories not fixed at the value
of the threshold (θ)? First, the decision is derived from the
smoothed output of LIP. The inherent delay between instanta-
neous measured activity in LIP and the detection of a threshold
crossing allows the LIP response to continue to rise beyond the
threshold before the decision is made. This effect is more
pronounced the higher the motion strength. Secondly, the last
phase of the decision is often dominated by transient noise
impulses. These transients occur with different latencies from
motion onset and are thus concealed within the response
averages aligned to the beginning of the trial. That is why, at
low motion strengths, the averaged responses remain below
threshold despite the fact that on any single trial, this threshold
was crossed. Together, the results in Figures 5 and 7 illustrate
that the same computation — integration to threshold — can
produce different patterns of single-unit responses depending
on the demands of the task.

Relationships between Single Neurons and Behavior on 
Single Trials
One of main dividends of the style of model that we have devel-
oped is that it portrays the activity of neurons as sequences of
spikes that resemble spike trains from neurons in areas MT and
LIP, incorporating their associated variability. We can therefore
use the model to formulate quantitative predictions about the
relationship between neural activity and decisions on a trial-by-
trial basis. A basic assumption is that neural signals are repre-
sented by the average spike rate from a large ensemble of

neurons with similar response properties. Consequently, the
impact of any one neuron on the animal’s behavior is relatively
small. In this section, we examine this assumption quantita-
tively. First, we consider how trial-to-trial variability in the
response of single MT neurons relates to the decisions on those
trials and to the monkey’s overall performance. Then, we
examine how the variability of single neurons in LIP relates to
the monkey’s RT on individual experimental trials and to the
monkey’s overall performance.

Single Neurons in Area MT

In their original studies, Newsome and colleagues made two
quantitative comparisons between MT neurons and behavior.
First, they compared the sensitivity of single neurons to the

Figure 7. Time course of LIP responses in the FD direction discrimination task. (A)
Average spike rate from 38 LIP neurons recorded in 1 s FD experiments which
alternated with blocks of RT experiments. Responses are grouped by motion strength
and choice as indicated by color and line type, respectively. The responses are aligned
in time with the onset of random dot motion (vertical line). The scale on the ordinate is
the same as in the model, panel (C), for comparison. The spike rates are averaged using
a running mean (±30 ms). Adapted from Roitman and Shadlen (2002). (B) Average
spike rate from 104 LIP neurons recorded in 0.5, 1 and 2 s FD experiments. Same
conventions as in (A). Spike rates are averaged using 50 ms bins. Note, ordinate scale
is different than in (A) and (C). Adapted from Shadlen and Newsome (2001). (C)
Responses of model LIP neurons. The simulated response averages are plotted using
the same conventions as in (A). The model output is undefined in the first 200 ms after
onset of motion (see Model Design). The horizontal dashed line indicates the height of
the decision threshold (θ), 55 spikes/s. Error trials are not included in these graphs.
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monkey’s behavioral sensitivity in a 2 s FD task (Newsome et al.,
1989; Britten et al., 1992). To quantify the neural sensitivity,
they compared the distributions of spike counts measured in
response to preferred- and null-direction motion. They calcu-
lated the probability that a spike count drawn from the distribu-
tion of preferred direction responses would exceed a spike
count drawn from the distribution of null direction responses.
They thus predicted the level of performance that would be
achieved if the monkey could compare responses from a pair of
neurons tuned to opposite directions of motion, that is, the
recorded neuron and one just like it but for the opposite direc-
tion preference. This analysis showed that single neurons are
surprisingly sensitive to random dot motion: the predicted accu-
racy versus coherence function from one neuron, which they
termed the neurometric function, was strikingly similar to the
monkey’s psychometric function on average (Fig. 8A). This
result implies that the monkey could achieve observed levels of
accuracy using only a single pair of MT neurons with opposed
direction preferences.

In the second comparison, the authors measured the correla-
tion between the response of an MT neuron and the monkey’s
choice on a single trial (Britten et al., 1996). The trial-by-trial
correlation between MT responses and choices was quantified
using a measure called the choice probability [CP; also called
sender operating characteristic, or SOC, in earlier publications
(Newsome et al., 1989; Celebrini and Newsome, 1994)]. To
obtain the CP, the spike counts are compiled from each repet-
ition of the same stimulus (i.e. same motion coherence and
direction). The spike counts are then partitioned into two
distributions, based on whether the animal chose the direction
corresponding to the preferred direction of the motion (Fig.
8C). The separation of these distributions is indexed by the CP,
which is the probability that a random draw of values from the
two distributions would show the right ordinal relationship (i.e.
larger for preferred direction choices). A CP value of 0.5 would
indicate that the distributions overlap perfectly, hence the
neuron’s response is uncorrelated with the monkey’s decision,
while a CP value of 1 would mean that every spike count associ-
ated with a preferred choice was larger than every spike count
associated with a null choice. The studies showed a weak but
significant relationship between the variable spike counts from
the neurons and the monkey’s choices. Across the population of
MT neurons recorded in the task, the average CP was 0.54–0.59,
depending on monkey.

Together, these two results presented a paradox. The simi-
larity between the psychometric function and the neurometric
function based on a pair of neurons seemed to suggest that the
brain does not combine signals from many MT neurons: more
neurons would improve the monkey’s accuracy to an unrealistic
level. On the other hand, if this were truly the case, the few
neurons underlying the decision should be highly correlated
with the monkey’s choice. A decision based on a comparison
between two neurons would yield a CP of ∼0.85 (Newsome et

al., 1989; Shadlen et al., 1996), whereas the average CP was
closer to 0.5, suggesting a very weak relationship. Thus the data
appear incompatible with either a population-coding model or a
model where a few MT neurons determine the decision.

Two solutions to this paradox were proposed by Newsome
and colleagues (Shadlen et al., 1996). First, one could assume
that the brain uses many MT neurons whose preferred direc-
tions are not as well matched to the random dot motion as the

neurons that were studied by Newsome et al. (1989), where the
motion was precisely aligned to the preferred direction of the
neurons. Pooling from such a mixture of optimal and sub-
optimal neurons would lead to less improvement in accuracy.
However, this resolution was not sufficient to explain the CP.
Even with arbitrarily large pools, and regardless of the mix of
optimal and sub-optimal neurons, single neurons would be
expected to retain a higher degree of correlation with the
monkey’s decision than observed (the predicted CP was ∼0.65).
This is because the neurons in the pools are thought to covary
weakly in their responses. To reduce the predicted CP, they
assumed that some additional noise is added during read-out of
the MT signal; they referred to this as pooling noise. By adjusting

Figure 8. Relationships between single MT neurons and behavior in FD experiments.
Left column: comparison of neurometric and psychometric functions. The neurometric
function estimates discrimination accuracy from the neuron’s responses to motion in
its preferred and null direction (see text). Sigmoid curves are best fitting Weibull
functions. (A) Data from a representative MT neuron in the Newsome database using
a 2 s FD task. Behavioral accuracy is similar to the accuracy of the neuron. (B) Predicted
neurometric and psychometric functions based on the assumption that the brain
integrates motion information for the 2 s of motion viewing. The predicted behavior is
superior to the accuracy estimated from a single neuron. (C) Predicted psychometric
function based on the assumption that the brain integrates to a decision threshold. The
neurometric function is the same as in (B). The accuracy of the predicted behavior is
similar to the accuracy of the neuron. Right column: responses of MT neurons on single
trials, sorted in accordance with the behavioral choice. Solid and open histograms
show responses to the 0% coherent motion on trials in which the monkey (or model)
chooses the preferred and null direction, respectively. The choice probability (CP)
indexes the separation of these distributions. It indicates how well a single MT neuron
predicts the monkey’s choices. (D) Choice probability (CP) for the neuron whose data
are shown in (A). (E) Predicted CP based on the assumption that the brain integrates
motion information for the 2 s of motion viewing. (F) Predicted CP based on the
assumption that the brain integrates to a decision threshold.
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the mixture of neurons and pooling noise, the model could
account for both the accuracy of the monkey and the trial-by-
trial relationship between single neurons and decisions.

The model in Figure 3 offers a simpler account of these
results. When the model is allowed to integrate for a full 2 s, it
yields the same problematic predictions as the Shadlen et al.

(1996) pooling model: a level of sensitivity that is about two
times better than single neurons and the monkey (Fig. 8B), and
CP values that are higher than those observed in the monkey
(Fig. 8E). Suppose, however, that instead of accumulating
evidence for the full duration of the motion stimulus, the
monkey reaches a decision when the evidence reaches a
threshold, θ, as in the RT task (see Fixed-duration Direction
Discrimination). According to this idea, MT spikes would only
contribute to the decision during the portion of the trial before
the threshold crossing. Importantly, the experimenter does not
know when this time occurs and thus includes all spikes from
the full 2 s recording into calculations of neural sensitivity and
CP.

This alternative decision model resolves the paradox posed by
the sensitivity of single MT neurons and the weak trial-by-trial
correlation between their variable responses and the monkeys’
decisions. First, the model no longer attains the 2-fold improve-
ment over the measured sensitivity of single neurons because
the decision process uses only a fraction of the 2 s viewing time.
In fact, the predicted psychometric function is now approxi-
mately the same as the neurometric function calculated from
just one typical MT neuron using 2 s of spike discharge (Fig. 8C).
This correspondence reflects the fact that the decision takes
∼500 ms on average, which is only one-quarter of the total
viewing time, so the model’s accuracy is factor of 2 lower than
the theoretical maximum. Secondly, the predicted CP in this
model is reduced to 0.57 (Fig. 8F), which is within the range of
values calculated by Britten et al. (1996)). Again, this occurs
because many of the MT spikes used to compute the CP do not
actually contribute to the decision, and thus they show no
correlation with the choice on a given trial. Hence, this model
advanced here can account for all sources of noise between the
sensory representation in MT and the decision. Moreover, as
shown in Figure 7, it explains features of the LIP responses
recorded in FD experiments.

The model makes one prediction that is contradicted by the
data. According to our idea, spikes recorded late in the trial are
less likely to affect the monkey’s choices because they are often
recorded after the monkey has made its decision. Assuming, as
we have, that these spikes are independent of those occurring
earlier in the trial, we would expect that they would exhibit no
correlation with the monkey’s choices. The data from Britten et

al. (1996) appear to contradict this prediction (see their figure
11). We will return to this issue in Discussion.

Single Neurons in Area LIP

Our model instantiates the idea that LIP represents the accumu-
lation of evidence for choosing the direction of motion associ-
ated with the choice target in the neuron’s response field. As
with MT, we assume that ensembles of noisy, weakly correlated,
spiking neurons supply the signals used for making decisions
about the direction of motion. Therefore, the same intuitions
should apply: responses from single LIP neurons should covary
weakly with the ensemble signals to which they contribute and
therefore with the monkey’s behavioral response.

The LIP neurons studied by Shadlen and Newsome (2001) and
Roitman and Shadlen (2002) exhibit responses that can be inter-
preted as motor planning signals. Not surprisingly, in the 100 ms
epoch just before the monkey makes an eye movement, the
responses are clearly associated with the eye movement
response. Indeed, for many neurons, it is possible to predict
with 100% reliability the monkey’s choice based on the spikes in
that trial. A more interesting quantity is the spike rate in the
epoch ending 100 ms before eye movement initiation in the RT
task (Fig. 9A), about the time when the evidence reaches the
threshold for commitment. Although the ensemble response in
LIP determines the monkey’s choice, individual neurons predict
the monkey’s choices with only modest reliability (mean CP =
0.73). Interestingly, the model yields a very similar CP value for
single neurons in the same epoch (Fig. 9B).

The model also predicts an association between the responses
of LIP neurons and the monkey’s reaction time on a given trial.
We would expect the rate of rise of the LIP spike rate to be
inversely correlated with RT: steeper changes in LIP should lead
to shorter RT. The challenge is to estimate the rate of rise of the
spike rate from the sequence of spikes on a single trial. Roitman
and Shadlen (2002) did this by finding the ramp that best
explained the data (spike train) in the maximum likelihood
sense. They used only spikes occurring from 200 ms after
motion onset to 100 ms before the saccade. An example of one
of their fits is shown in Figure 10A.This analysis yields a spike
rate slope value on each trial, which can then be compared to
the reaction time on that trial.

Figure 10B shows a scatter plot of RTs and the best estimate of
spike rate slopes from one neuron using 15 trials in which the
monkey viewed an intermediate motion strength (6.4% coher-

Figure 9. Choice probability in area LIP near the end of the decision process. Spike
rates were measured in the epoch 200 to 100 ms before saccade initiation in the RT
task. Solid and open histograms show responses to the 0% coherent motion on trials in
which the monkey (or model) chooses the target in or out of the neurons response field,
respectively. The choice probability (CP) indexes the separation of these distributions.
It indicates how well a single LIP neuron predicts the monkey’s choices. (A) Data from
one representative neuron. Across the population of LIP neurons studied by Roitman
and Shadlen (2002), the average CP = 0.73 (P < 0.05; n = 54 neurons). (B) Model
prediction. The expected CP based on the integrate-to-threshold model is 0.72 in this
epoch.
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ence) in the direction that led to a correct choice (an eye move-
ment to the choice target in the neuron’s RF). A weak but
measurable relationship is apparent between the slope of the
spike rate and the reaction time (r = –0.08), with larger slopes
leading to shorter reaction times. We repeated this analysis for
each neuron, using only those trials in which the monkey made
a correct choice to the RF. The histogram of r values obtained in
this fashion is shown in Figure 10C. Across the population of 36
LIP neurons, the average correlation was r = –0.13 (P < 0.05).
Using data sets of comparable size to those obtained in LIP, the
model yields a similar inverse correlation between RT and esti-

mated ramp slope (mean r = –0.13; Fig. 10D). The relatively
close match between the predicted and observed correlation
levels suggests that the ramping responses seen in single LIP
neurons reflect an accumulating decision signal being carried in
the average rate of a local ensemble of similar neurons.

Discussion
Integration with respect to time is thought to play a role in
neural computations involved in navigation and motor control.
In the brainstem oculomotor system, integration converts a
velocity ‘pulse’ to a persistent ‘step’ in spike rate, which is used
to hold the gaze in an eccentric position (Robinson, 1989). Simi-
larly, neurons that represent head position are thought to incor-
porate the time integral of angular velocity of the head
(Fukushima et al., 1992; Seung et al., 2000; Aksay et al., 2001;
Goldman et al., 2002). Indeed, wherever one observes
persistent neural activity in the brain, it seems reasonable to
hypothesize that it represents the integration of a transient
input. However, unlike the previous examples, persistent
activity in higher brain centers can be elicited under a wide
range of conditions, and is subject to modulation by a number of
factors. How does integration contribute to higher brain func-
tion? The experiments described and simulated in this paper
represent an attempt to begin to answer that question. For the
problem of discriminating between two categorical interpret-
ations of a stochastic sensory stimulus, it seems likely that
integration allows the brain to accumulate evidence over time,
thereby improving the fidelity of perception and accuracy of
decision making.

Our model instantiates the idea that the decision in the
random dots task is based on the time integral of motion
evidence represented by neurons in area MT. The simulations
described in this paper do not test the idea, but instead explore
its implications. In that sense, the model exposes important
features of the data, furnishes novel interpretations, and makes
predictions about future experiments (see Supplementary
Material). In what follows, we provide some intuition for the
structure of the model, explain the rationale behind several
assumptions, and explore its successes, limitations and alter-
natives.

Structure of the Model
A substantial body of experimental results indicates that neurons
in area MT represent the critical sensory signals that monkeys
use to base their judgment of random dot motion (for reviews,
see Parker and Newsome, 1998; Britten, 2003). This evidence
fluctuates in time, reflecting both the variability in the dynamic
stimulus and the noise in the neural response (Mazurek and
Shadlen, 2002). It must be accumulated in order for the brain to
reach an accurate decision. The model suggests that this integ-
rated motion evidence is carried in the responses of sensorim-
otor association areas such as LIP. When the accumulated
evidence reaches a threshold level, the decision process termin-
ates. The higher the threshold, the longer it will take to reach a
decision but the more accurate the decision will be, on average.
The model thus takes us from the representation of motion to a
commitment to a choice.

The model’s structure incorporates several assumptions about
the nature of the neural signals in these computations. These are
detailed in the Supplementary Material along with a description
of the mathematical operations used to perform the simulations.

Figure 10. Trial-by-trial correlation between LIP response and reaction time. (A)
Example of a spike train and the estimated rate function from one trial. The response
was obtained during exposure to 6.4% coherence motion toward the neuron’s RF,
leading to a correct response. The raster shows the times of action potentials with
respect to the time of motion onset (t = 0). The dashed line indicates the average firing
rate from the trial calculated in 100 ms bins. The solid line indicates the maximum
likelihood fit of a linear rate function to the spike train. The fit assumes that the rate
changes linearly from 200 ms after motion onset until 100 ms before the saccade (for
details, see Roitman and Shadlen, 2002). It provides an estimate of the slope of the
‘firing-rate-versus-time’ function. (B) Relationship between reaction time and slope of
the firing-rate-versus-time function. Scatter plot shows RT and slopes for correct
choices from one experiment using the 6.4% coherent motion toward the neuron’s RF
(n = 15 trials). The weak inverse correlation is not significant owing to the small
number of samples, but the value is representative. (A) and (B) are adapted from
Roitman and Shadlen (2002). (C) Distribution of correlation coefficients from 36 LIP
neurons. Each neuron contributes one correlation value to the distribution based on all
correct choices that end in an eye movement to the RF. The correlation value is
obtained after standardizing the firing rate slopes and reaction times within each
motion strength. 27% of the neurons (10/36) showed individually significant correlation
(P < 0.05, Fisher’s z; gray bars). Across the population of neurons, the average
correlation coefficient was r = –0.13 (P < 0.05, H0: r = 0). (D) Model prediction. We
grouped simulated trials into batches where each batch contained the same number of
trials as one of the neurons in the data set. These simulated data batches show the
same average correlation between LIP firing rate slope and reaction time as seen in the
neural data (r = –0.13), with comparable spread in the observed r values. 16% of the
batches showed individually significant correlation (gray bars).



Cerebral Cortex November 2003, V 13 N 11 1267

What Do We Learn from the Model?
Integration of MT signals to a decision threshold explains the
effect of motion strength on the monkey’s behavior in the reac-
tion time (RT) task (Fig. 4). It reconciles the accuracy of the
monkey’s decisions with the amount of time required to make
them. Stronger motion produces a rapid accumulation of
evidence toward the correct decision threshold. Weaker motion
produces a more random accumulation that meanders between
either decision threshold, leading to a mixture of correct and
incorrect responses. For the 0% coherent motion, the accumula-
tion is equally likely to ‘diffuse’ toward either threshold.

Accumulation to threshold also accounts for the psychometric
function observed in the fixed duration (FD) task, where the
experimenter controls the stimulus duration (Fig. 6). This idea
resolves a puzzling observation: monkeys achieve similar level of
accuracy on RT and 1 s FD tasks (Fig. 6A), despite the longer
viewing times provided in the FD experiment. We propose that
this surprising behavior occurs because the monkey employs a
threshold of evidence for committing to a decision in the FD
task, just as in the RT task (Link and Heath, 1975; Meyer et al.,
1988; Ratcliff, 1988; Link, 1992). The similarity in performance
suggests that the monkeys used the same level of the decision
threshold (θ) in the two tasks.

This idea does not imply that monkeys cannot improve their
performance with increasing viewing times. If the viewing dura-
tion is relatively short, the integrated evidence may fail to reach
threshold. In that case the optimal solution is to respond based
on the available evidence, which is expected to increase in reli-
ability as a function of √t. Behavioral evidence for such integra-
tion can be found in FD experiments (Britten et al., 1992; Gold
and Shadlen, 2000; Gold and Shadlen, 2003).

Integration to threshold explains the time course of the
responses from LIP neurons in both RT and FD tasks (Figures 5
and 7). This observation reconciles a remarkable discrepancy in
the experimental data: the responses during motion viewing
exhibit different time courses depending on whether the
monkey is performing the RT or the FD task (Roitman and
Shadlen, 2002). Our simulations demonstrate that integration to
threshold can account for the time course of the responses in
both of these situations, predicting both ramp-like increases and
decreases in the RT task and saturating functions of time in the
FD task. The model also reconciles some puzzling observations
about the LIP activity: (i) the convergence of rising responses
preceding eye movements to the RF in the RT task (Fig. 5A,B,
solid curves, right panels); (ii) the absence of convergence of
declining responses before eye movements to away from the RF
in the RT task (Fig. 5A,B, dashed curves, right panels); (iii) the
absence of convergence of rising responses (i.e. the coherence-
dependent saturation) in FD trials (Fig. 7); and (iv) the apparent
failure of averaged responses in FD experiments to reach a
common threshold.

Because the model explicitly represents the activity of single
MT and LIP neurons, it lends insight into the relationship
between behavioral measurements and single neuron record-
ings obtained in the laboratory. By mimicking the spike
discharge of single MT neurons, the model explains the
observed relationship between MT responses and the monkey’s
decisions on a trial-to-trial basis (choice probability; Fig. 8D–F).
By mimicking the spike discharge of single LIP neurons, the
model explains the observed relationship between LIP
responses and behavior in the RT task (Figures 9 and 10). The
explanation of these single-trial comparisons, which are only

available from combined psychophysics–neurophysiology
experiments, are the main dividend of our modeling exercise.
Finally, the idea that evidence is integrated to a threshold, even
when given a fixed viewing duration, serves to reconcile the
exquisite sensitivity of single MT neurons with the overall sensi-
tivity of the monkey to random dot motion (Fig. 8A–C).

Model Limitations and Failures
A major limitation of our model is that it fails to specify how key
computations are achieved by neurons. It offers no insight into
the neural mechanisms that would underlie integration, or direc-
tion selectivity, or even addition and subtraction. Nor does the
model attempt to explain the mechanism by which the LIP
activity is compared to the decision threshold. The biophysical
and circuit properties underlying operations such as integration
are an active topic of investigation at the theoretical and
experimental level (Camperi and Wang, 1997, 1998; Seung et

al., 2000; Aksay et al., 2001; Koulakov et al., 2002). Our model
circumvents these issues by performing simple mathematical
calculations on spike rate signals, but obviously this leaves open
the question of how the brain actually accomplishes the calcu-
lations.

Similarly, our model provides little insight into the control of
the integration process. For example, we do not attempt to
explain the early dip and recovery of neural activity that occurs
just after onset of random dot motion. These ‘dips’ are a
common feature of neurons with persistent activity (Sato et al.,
2001), and we suspect that this phenomenon might play a role
in initiating the integration, perhaps serving as a reset. Similarly,
we assume that LIP stops receiving sensory input after the deci-
sion threshold is crossed, even when motion information
remains present as in the FD task. This may be plausible in the
context of the random dot motion task, but it is undoubtedly an
oversimplification. Clearly, neural integration for high-level
cognitive behavior requires complex controls and is susceptible
to numerous influences, and our model makes no attempt to
capture these various factors.

Finally, neither our data nor our model address the question of
whether integration actually occurs in LIP or elsewhere, only to
be relayed to LIP. Several brain areas show decision related
activity similar to what is observed in LIP, including the pre-
frontal cortex and the superior colliculus (Kim and Shadlen,
1999; Horwitz and Newsome, 2001). It is unknown whether
any or all of these areas are responsible for integration of the
evidence from MT, or to what degree their responses simply
reflect this process.

In addition to its limitations, the model makes several predic-
tions that are known to be incorrect. The most serious discrep-
ancy between model and data is in the RT associated with error
trials. The model predicts relatively fast error responses,
whereas monkeys tend to take slightly more time to respond on
error trials than on correct trials at each coherence level (Fig. 4).
Diffusion or random walk models, which are related to ours,
predict that errors and correct trials share the same chrono-
metric function (RT versus motion strength) (Luce, 1986). Our
model produces fast errors because of variability in the LIP
signal, resulting in early threshold crossings. How might these
fast errors be remedied? Ratcliff and Rouder (1998) demon-
strated that the inclusion of trial-to-trial variability in the effec-
tive stimulus strength produces slower errors in diffusion
models sharing features with ours. This source of variability is
not incorporated in our model: the expected MT response is
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identical across trials sharing the same motion strength, which is
clearly an oversimplification. Remedying this might bring the
predicted error RTs closer to those observed in the data. In addi-
tion, we should note that monkeys performing the discrimina-
tion task probably make errors for a wide variety of reasons,
many of which are not captured by the integration model (e.g.
lapses in attention, blinks). Hence, error RTs may be harder to
explain than other aspects of the behavior.

There is at least one other prediction of the model that is
contradicted by data. In simulations using a fixed 2 s duration,
the model posits that MT inputs are ignored after LIP crosses the
decision threshold. This predicts that MT spikes occurring early
in the viewing period should correlate with the monkey’s deci-
sion more strongly than spikes occurring later in the trial, which
is contrary to the findings of Britten et al. (1996). One possible
explanation may be that the monkeys in the Britten et al. study
began integrating MT spikes at a variety of latencies during the
2 s motion viewing period. This is consistent with our observa-
tions that the animals require much less than the 2 s to reach a
decision. Some support for this idea can be found in Shadlen and
Newsome’s study of LIP (Shadlen and Newsome, 2001). They
found that exposure to viewing durations shorter than 2 s
caused an acceleration in the build up of LIP activity for trials of
all durations. Direct measurements of MT neurons in monkeys
trained to perform both FD and RT tasks may help to clarify
these issues.

Model Extensions and Alternatives
The analyses presented in this paper show that time integration
of sensory evidence to a threshold accounts for a wide variety of
behavioral and physiological observations in monkeys trained to
discriminate the direction of random dot motion. Several exten-
sions to the basic idea deserve consideration. Variability in the
parameters of integration, such as the starting time, the baseline
spike rate, and the drift rate, may be helpful in remedying the
failures and improving the generality of the model, especially
when incorporating prior biases into the decision (Carpenter
and Williams, 1995; Ratcliff and Rouder, 1998). Similarly, the
decision threshold may be variable and is likely to change as a
function of time. A dynamic decision threshold embodies the
idea that commitment to one or another behavioral option may
need to occur by some time point or with some degree of
urgency (Reddi and Carpenter, 2000). In general, the decision
threshold is likely to incorporate knowledge of the accuracy that
has been achieved, the passage of time, and the rate at which
reward is attained (Gold and Shadlen, 2002). These factors will
need to be incorporated into a more complete computational
model.

The main alternative to temporal integration is a decision
process that is not based on an accumulation of information but
instead on extreme values in the sensory data, considered as a
passing stream. This type of process is often termed ‘probability
summation’ (Watson, 1979). Like integration, probability sum-
mation predicts that accuracy and decision time will depend on
motion strength. However, probability summation would not
predict the existence of neurons like those in LIP that represent
a decision variable that evolves gradually. Rather, it predicts that
at any moment, the brain is either committed to a decision or it
has yet to detect the decisive sensory data. The pattern of neural
responses seen in LIP fails to support this alternative, but indi-
vidual neurons could in principle undergo the kind of state

change predicted by this model on individual trials. The idea is
that the average of many such switches from an intermediate
spike rate to a high spike rate (or a low spike rate for the
opposite choice) at different times could give rise to the ramp-
like trajectories seen in Figure 5. The evidence at present favors
integration over probability summation (see Gold and Shadlen,
2000; Roitman and Shadlen, 2002), but further experiments will
be necessary to clarify the matter

Concluding Remarks

We have examined the proposal that neural integration of time-
varying sensory signals underlies the formation of decisions
about the direction of random dot motion. The model explains
a variety of behavioral and physiological observations, and its
deficiencies are relatively minor. The model provides no insight
into how integration comes about, but it does help to answer
two fundamental questions: what is integrated and to what end?
The answer to the first question is sensory data construed as
evidence for versus against a proposition. The answer to the
second question is that the evidence is integrated to a threshold
level, and the crossing of the threshold signals a commitment to
a proposition or behavioral response. For the random dots task,
the integral is represented by neurons in the parietal cortex and
other visual-oculomotor association areas. A common property
of these neurons is their ability to discharge in a persistent
fashion and thus carry their representation of space or motor
intention forward through time. Persistent activity is observed
in many cortical areas, where it is has been associated with
memory traces (Fuster and Alexander, 1971; Fuster, 1973; Miya-
shita and Chang, 1988; Funahashi et al., 1989) and motor plan-
ning (Evarts and Tanji, 1976; Tanji and Hoshi, 2001). It is
tempting to view such activity as a hallmark of integration,
furnishing the brain with the capacity to evaluate propositions
about the state of the world in order to plan appropriate
behavior.
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